
COL7160 : Quantum Computing
Lecture 7: Oracle Model and Deutsch’s Algorithm

Instructor: Rajendra Kumar Scribe: Abhinav Rajesh Shripad

1 Proving Uf is unitary
We begin by solving the last lecture’s homework problem of proving the operation defined by

Uf : |z, b⟩ → |z, b⊕ f(z)⟩

Where f : {0, 1}n → {0, 1}m.

Proof. To show that Uf is unitary, we must prove that

⟨ψ | φ⟩ = ⟨Ufψ | Ufφ⟩ for all |ψ⟩, |φ⟩.

It suffices to verify this condition on an orthonormal basis.
Consider two computational basis states

|z, b⟩ and |z′, b′⟩,
where z, z′ ∈ {0, 1}n and b, b′ ∈ {0, 1}m. Their inner product is

⟨z, b | z′, b′⟩ = δz,z′ δb,b′ .

Applying Uf , we obtain
Uf |z, b⟩ = |z, b⊕ f(z)⟩,

Uf |z′, b′⟩ = |z′, b′ ⊕ f(z′)⟩.
The inner product of the transformed states is

⟨z, b⊕ f(z) | z′, b′ ⊕ f(z′)⟩ = δz,z′ δ b⊕f(z), b′⊕f(z′).

If z ̸= z′, the inner product is zero on both sides. If z = z′, then

b⊕ f(z) = b′ ⊕ f(z) ⇐⇒ b = b′,

since XOR with a fixed string is invertible.
Therefore,

⟨Uf (z, b) | Uf (z
′, b′)⟩ = δz,z′ δb,b′ = ⟨z, b | z′, b′⟩.

Hence Uf preserves inner products.

Aliter. Alternatively, onemay observe thatUf maps the computational basis to a permutation of the computational
basis. Since permutations of an orthonormal basis preserve orthonormality, Uf maps ’an’ orthonormal basis to ’an’
orthonormal basis. Therefore, Uf is unitary. This argument is left as an exercise for the reader.

2 Parity Problem / Deutsch Problem
Consider the class of Boolean functions

A = { f | f : {0, 1} → {0, 1} }.

We partition this class into two disjoint subsets:

Constant = { f ∈ A | f(0) = f(1) }, (1)
Balanced = { f ∈ A | f(0) ̸= f(1) }. (2)
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Problem Statement. Given oracle access to a function f ∈ A, determine whether f is Constant or Balanced.

Classical (Naive) Algorithm
Classically, one can evaluate f(0) and f(1) using two queries and decide with certainty whether f is constant or
balanced. Thus, any classical deterministic algorithm requires two queries in the worst case.
The goal is to reduce the number of queries using a quantum algorithm.

Deutsch’s Algorithm
Let the oracle be implemented as the unitary operator

Uf |a⟩|b⟩ = |a⟩|b⊕ f(a)⟩.

Consider the second register initialized in the state

|−⟩ = 1√
2
(|0⟩ − |1⟩).

Then,

Uf |a⟩|−⟩ = 1√
2
|a⟩
(
|0⊕ f(a)⟩ − |1⊕ f(a)⟩

)
(3)

=
1√
2
(−1)f(a)|a⟩(|0⟩ − |1⟩) (4)

= (−1)f(a)|a⟩|−⟩. (5)

This operation is known as a phase query, and is often denoted by

Uf,±|a⟩ = (−1)f(a)|a⟩.

Homework. If f is an n→ m bit function, can phase be taken out similarly ?

Note that the above query alone does not suffice to solve the problem, since it encodes information about only a
single value f(a).
For comparison, consider

Uf |+⟩|0⟩ = 1√
2

(
|0⟩|f(0)⟩+ |1⟩|f(1)⟩

)
,

which computes both f(0) and f(1), but contains no relative phase information.
Motivated by this observation, we instead consider

Uf |+⟩|−⟩ = 1√
2

(
(−1)f(0)|0⟩+ (−1)f(1)|1⟩

)
|−⟩.

Ignoring the unchanged second qubit, the state of the first qubit is

1√
2

(
(−1)f(0)|0⟩+ (−1)f(1)|1⟩

)
.

Applying a Hadamard measurement to the first qubit:

• If f is Constant, then (−1)f(0) = (−1)f(1), and the state collapses to |+⟩ with certainty.

• If f is Balanced, then (−1)f(0) ̸= (−1)f(1), and the state collapses to |−⟩ with certainty.

Thus, the Deutsch problem can be solved with a single quantum query, demonstrating a strict quantum advantage
over classical deterministic algorithms.
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3 Oracle Model
In the oracle model, we are given access to an unknown function

f : {0, 1}n → {0, 1}m,

not by an explicit description, but via a unitary operator (oracle)

Uf : |x, b⟩ 7−→ |x, b⊕ f(x)⟩,

where x ∈ {0, 1}n and b ∈ {0, 1}m.
The oracle Uf allows us to query the value of f(x) coherently on superpositions of inputs, which is the key resource
exploited by quantum algorithms.

Oracle as a Bit-String Access Model
An equivalent and often convenient formulation is obtained when the function values are encoded in a classical bit
string. Let

y = y0y1 · · · yN−1 ∈ {0, 1}N .

We define an oracle
Oy : |i, b⟩ 7−→ |i, b⊕ yi⟩,

where i ∈ {0, 1, . . . , N − 1} and b ∈ {0, 1}.
We may interpret y as defining a Boolean function

f : {0, 1, . . . , N − 1} → {0, 1}, f(i) = yi.

Identifying the index set {0, 1, . . . , N − 1} with {0, 1}n, we have

N = 2n and hence n = log2N.

Under this identification, the oracle Oy is precisely the standard function oracle Uf for a Boolean function, written
in index notation rather than binary string notation.

4 Generalization of Parity Problem
Consider the class of Boolean functions

A = { f | f : {0, 1}n → {0, 1} }.

We partition this class into two disjoint subsets:

Constant = { f ∈ A | f(x) = f(y), ∀x, y ∈ {0, 1}n }, (6)
Balanced = { f ∈ A | f(x) = 0 for exactly 2n−1 inputs and (7)

f(x) = 1 for exactly 2n−1 inputs }. (8)

Promise Problem. Given oracle access to a function f ∈ A, determine whether f is Constant or Balanced,
under the promise that f belongs to one of these two classes.

Classical Complexity
Classically, in the worst case, one must evaluate f on more than half of all possible inputs to distinguish a constant
function from a balanced one with certainty. In particular, any deterministic classical algorithm requires at least

2n−1 + 1

queries in the worst case.
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Quantum Algorithm
The oracle is given by the unitary operator

Uf : |x, b⟩ 7−→ |x, b⊕ f(x)⟩,

where x ∈ {0, 1}n and b ∈ {0, 1}.
Initialize the system in the state

|0⟩⊗n|1⟩.

Apply a Hadamard transform to all qubits to obtain(
H⊗n ⊗H

)
|0⟩⊗n|1⟩ = 1

2n/2

∑
x∈{0,1}n

|x⟩ ⊗ |−⟩,

Next, apply the oracle Uf :

Uf

(
1

2n/2

∑
x

|x⟩|−⟩

)
=

1

2n/2

∑
x

(−1)f(x)|x⟩|−⟩.

The last qubit remains unchanged and may be ignored. Apply a Hadamard transform to the first n qubits:

H⊗n

(
1

2n/2

∑
x

(−1)f(x)|x⟩

)
=

∑
z∈{0,1}n

αz|z⟩,

where
αz =

1

2n

∑
x∈{0,1}n

(−1)f(x)(−1)x·z.

Measurement and Correctness
In particular, the amplitude of the state |0⟩⊗n is

α0 =
1

2n

∑
x

(−1)f(x).

• If f is Constant, then either f(x) = 0 for all x or f(x) = 1 for all x, and hence

α0 = ±1.

Thus, the measurement outcome |0⟩⊗n occurs with probability 1.

• If f is Balanced, then exactly half the terms contribute +1 and half contribute −1, yielding

α0 = 0.

Thus, the measurement outcome |0⟩⊗n occurs with probability 0.

Therefore, measuring the first register:

• Outcome |0⟩⊗n ⇒ f is Constant,

• Any other outcome⇒ f is Balanced.
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