COL7160 : Quantum Computing
Lecture 7: Oracle Model and Deutsch’s Algorithm

Instructor: Rajendra Kumar Scribe: Abhinav Rajesh Shripad

1 Proving U; is unitary

We begin by solving the last lecture’s homework problem of proving the operation defined by
Uy :lz,b) = 2,0 D f(2))

Where f: {0,1}" — {0,1}™.

Proof. To show that Uy is unitary, we must prove that

(W) =Usy | Usp) forall[y), |g).

It suffices to verify this condition on an orthonormal basis.
Consider two computational basis states
|z,b) and |2/, V),

where z,2’ € {0,1}" and b, € {0, 1}™. Their inner product is
<Z, b | Z’7 b/> = (527,2/ (51,,1,/.

Applying U, we obtain
Urlz,b) = |z, b® f(2)),

Uel2" 0y = |2/, 0 @ f(2)).
The inner product of the transformed states is
(2,0® f(2) | 2,0 @ f(2)) = 022 Orar (o), braf (=)
If z # 2/, the inner product is zero on both sides. If z = 2/, then
b f(z)=V® f(z) <= b=V,

since XOR with a fixed string is invertible.
Therefore,

<Uf(zvb) | Uf(zl7b/)> = 5272/ 6b,b’ = <Zab | Zlvb/>'

Hence U} preserves inner products. O

Aliter. Alternatively, one may observe that Uy maps the computational basis to a permutation of the computational
basis. Since permutations of an orthonormal basis preserve orthonormality, U maps ’an’ orthonormal basis to ’an’
orthonormal basis. Therefore, Uy is unitary. This argument is left as an exercise for the reader.

2 Parity Problem / Deutsch Problem
Consider the class of Boolean functions

We partition this class into two disjoint subsets:

Constant = { f € A | (0) = (1)), <1>
Balanced = { f € A | f(0) # f(1) }. ®)



Problem Statement. Given oracle access to a function f € A, determine whether f is Constant or Balanced.

Classical (Naive) Algorithm

Classically, one can evaluate f(0) and f(1) using two queries and decide with certainty whether f is constant or
balanced. Thus, any classical deterministic algorithm requires two queries in the worst case.
The goal is to reduce the number of queries using a quantum algorithm.

Deutsch’s Algorithm

Let the oracle be implemented as the unitary operator
Usla)[p) = |a)|b @ f(a)).
Consider the second register initialized in the state
1
—) = —=(0) = |1)).
=) = =(0) ~ 1)
Then,

Usla)|=) = —=la)(|0 & f(a)) — [1 & f(a))) (3)

(~1)7@la)(0) — 1)) @)
= (~1)/@la)|-). ()

Sl =Sl

This operation is known as a phase query, and is often denoted by
Up.+la) = (=1)/]a).

Homework. If fis an n — m bit function, can phase be taken out similarly ?

Note that the above query alone does not suffice to solve the problem, since it encodes information about only a
single value f(a).
For comparison, consider

1
V2
which computes both f(0) and f(1), but contains no relative phase information.
Motivated by this observation, we instead consider

Uyl+)10) = —=(10)£(0)) + [1)[£(1))),

Uyl-) = \%((—1)“‘”\@ L) O ).

Ignoring the unchanged second qubit, the state of the first qubit is

25 (DO + (1) D).

Applying a Hadamard measurement to the first qubit:
« If f is Constant, then (—1)/(®) = (—1)/(1) and the state collapses to |+) with certainty.
. If f is Balanced, then (—1)/(®) = (—1)/(}) and the state collapses to |—) with certainty.

Thus, the Deutsch problem can be solved with a single quantum query, demonstrating a strict quantum advantage
over classical deterministic algorithms.



3 Oracle Model
In the oracle model, we are given access to an unknown function
f:{0,13" = {0, 13",
not by an explicit description, but via a unitary operator (oracle)
Up : |z, b) — |z, b f(2)),

where z € {0,1}" and b € {0,1}™.
The oracle Uy allows us to query the value of f(z) coherently on superpositions of inputs, which is the key resource
exploited by quantum algorithms.

Oracle as a Bit-String Access Model

An equivalent and often convenient formulation is obtained when the function values are encoded in a classical bit
string. Let

y=yoy1 - yn—1 € {0,1}".
We define an oracle
Oy : |i,b) — |3, bD vi),

wherei € {0,1,...,N —1}and b € {0,1}.
We may interpret y as defining a Boolean function

f:4{0,1,...,N —1} — {0,1}, f(i) =y
Identifying the index set {0,1,..., N — 1} with {0, 1}", we have
N =2" and hence n = logy N.

Under this identification, the oracle O, is precisely the standard function oracle Uy for a Boolean function, written
in index notation rather than binary string notation.

4 Generalization of Parity Problem
Consider the class of Boolean functions

A={f1f:{0,1}" = {0,1}}.

We partition this class into two disjoint subsets:

Constant = { f € A | f(z) = f(y), Va,y € {0, 1}" }, ©)
Balanced = { f € A| f(z) = 0 for exactly 2"~ " inputs and (7)
f(x) = 1 for exactly 2"~ ! inputs }. (8)

Promise Problem. Given oracle access to a function f € A, determine whether f is Constant or Balanced,
under the promise that f belongs to one of these two classes.

Classical Complexity

Classically, in the worst case, one must evaluate f on more than half of all possible inputs to distinguish a constant
function from a balanced one with certainty. In particular, any deterministic classical algorithm requires at least

2n—1 + 1

queries in the worst case.



Quantum Algorithm
The oracle is given by the unitary operator
Uf : |z, b) — |z, b® f(x)),

where z € {0,1}" and b € {0, 1}.
Initialize the system in the state
10)2"[1).

Apply a Hadamard transform to all qubits to obtain

1
(e m 0Ty =y Y mel),
ze{0,1}™

Next, apply the oracle Uy:

Uy (2711/22]@4) e Z V@) |=).

The last qubit remains unchanged and may be ignored. Apply a Hadamard transform to the first n qubits:
1o (G SO = 3
z€{0,1}"

where

=g 3 ()

ze{0,1}"

Measurement and Correctness

In particular, the amplitude of the state |0)®" is

1
§ : J(z)
ap = on ( 1) .

x

« If f is Constant, then either f(x) = 0 for all x or f(x) = 1 for all x, and hence
ag = *£1.
Thus, the measurement outcome |0)®" occurs with probability 1.
« If f is Balanced, then exactly half the terms contribute +1 and half contribute —1, yielding
ag = 0.
Thus, the measurement outcome |0)®" occurs with probability 0.

Therefore, measuring the first register:
« Outcome |0)®" = f is Constant,

+ Any other outcome = f is Balanced.
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